Compare commits

..

3 Commits

Author SHA1 Message Date
7e23dc9d9c add two threading examples 2025-10-17 19:17:22 +02:00
6b81c76915 start with zero turtles 2025-10-17 19:16:43 +02:00
3f21afadb2 add threading 2025-10-17 19:16:19 +02:00
6 changed files with 794 additions and 5 deletions

View File

@ -13,6 +13,7 @@ tracing = { version = "0.1", features = [
"attributes", "attributes",
], default-features = false } ], default-features = false }
turtle-lib-macros = { path = "../turtle-lib-macros" } turtle-lib-macros = { path = "../turtle-lib-macros" }
crossbeam = "0.8"
[dev-dependencies] [dev-dependencies]
# For examples and testing # For examples and testing

View File

@ -0,0 +1,106 @@
//! Example: Game Logic in Separate Thread
//!
//! This example demonstrates how to run game logic in a separate thread
//! while keeping the render loop responsive on the main thread.
//!
//! The main thread handles rendering and animation, while game logic
//! threads can perform blocking operations (like fetching data) and
//! send turtle commands via channels.
use std::thread;
use std::time::Duration;
use turtle_lib::*;
#[macroquad::main("Game Logic Threading")]
async fn main() {
let mut app = TurtleApp::new();
// Create two turtles and get their command senders
let turtle1_tx = app.create_turtle_channel(100);
let turtle2_tx = app.create_turtle_channel(100);
// Spawn first game logic thread
let _thread1 = thread::spawn({
let tx = turtle1_tx.clone();
move || {
// Simulate some blocking work (e.g., network request, calculation)
println!("Thread 1: Starting work...");
thread::sleep(Duration::from_millis(500));
// Now send turtle commands
let mut plan = create_turtle_plan();
plan.set_pen_color(BLUE)
.forward(100.0)
.right(90.0)
.forward(100.0)
.right(90.0)
.forward(100.0)
.right(90.0)
.forward(100.0);
tx.send(plan.build())
.expect("Failed to send commands for turtle 1");
println!("Thread 1: Commands sent!");
// Send more commands in a loop
for i in 0..10 {
thread::sleep(Duration::from_millis(300));
let mut step = create_turtle_plan();
step.right(36.0).forward(50.0);
let _ = tx.try_send(step.build());
println!("Thread 1: Step {} sent", i + 1);
}
}
});
// Spawn second game logic thread
let _thread2 = thread::spawn({
let tx = turtle2_tx.clone();
move || {
// Different timing than thread1
println!("Thread 2: Starting work...");
thread::sleep(Duration::from_millis(1000));
// Draw a circle with turtle2
let mut plan = create_turtle_plan();
plan.set_pen_color(RED).circle_left(75.0, 360.0, 72);
tx.send(plan.build())
.expect("Failed to send commands for turtle 2");
println!("Thread 2: Circle sent!");
}
});
// Main render loop
let mut frame_count = 0;
loop {
// Check for quit
if macroquad::prelude::is_key_pressed(macroquad::prelude::KeyCode::Escape)
|| macroquad::prelude::is_key_pressed(macroquad::prelude::KeyCode::Q)
{
break;
}
// Clear background
macroquad::prelude::clear_background(WHITE);
// Process incoming commands from game logic threads
// This drains all pending commands from turtle channels
app.process_commands();
// Update animation state (tweening, etc.)
app.update();
// Render the turtles
app.render();
frame_count += 1;
if frame_count % 60 == 0 {
println!("Rendered {} frames", frame_count);
}
macroquad::prelude::next_frame().await;
}
println!("Finished!");
}

View File

@ -0,0 +1,370 @@
//! Hangman Game with Threading
//!
//! A classic hangman game where game logic runs in a separate thread
//! while the render loop stays responsive. The user can make guesses
//! while turtle animations play smoothly.
//!
//! Run with: `cargo run --package turtle-lib --example hangman_threaded`
use std::io::{self, Write};
use std::sync::mpsc;
use std::thread;
use turtle_lib::*;
// Word list for the game
const WORDS: &[&str] = &[
"turtle",
"graphics",
"threading",
"rust",
"animation",
"crossbeam",
"channel",
"synchronization",
"parallel",
"concurrent",
];
#[macroquad::main("Hangman")]
async fn main() {
let mut app = TurtleApp::new();
// Create three turtles: hangman, lines, and smiley
let hangman_tx = app.create_turtle_channel(100);
let lines_tx = app.create_turtle_channel(100);
let smiley_tx = app.create_turtle_channel(100);
// Channel for game logic to communicate with render thread
let (tx, rx) = mpsc::channel();
// Spawn game logic thread
let game_thread = thread::spawn({
let hangman = hangman_tx.clone();
let lines = lines_tx.clone();
let smiley = smiley_tx.clone();
let tx = tx.clone();
move || {
run_game_logic(hangman, lines, smiley, tx);
}
});
// Main render loop
let mut frame = 0;
loop {
// Check for quit
if macroquad::prelude::is_key_pressed(macroquad::prelude::KeyCode::Escape)
|| macroquad::prelude::is_key_pressed(macroquad::prelude::KeyCode::Q)
{
break;
}
// Process incoming commands from game thread
while let Ok(msg) = rx.try_recv() {
match msg {
GameMessage::GameOver { won, word } => {
if won {
println!("🎉 You Won! The word was: {}", word);
} else {
println!("💀 You Lost! The word was: {}", word);
}
break;
}
}
}
// Clear and render
macroquad::prelude::clear_background(WHITE);
app.process_commands();
app.update();
app.render();
frame += 1;
if frame % 60 == 0 {
println!("Rendered {} frames", frame / 60);
}
macroquad::prelude::next_frame().await;
}
// Wait for game thread to finish
game_thread.join().ok();
println!("Game ended. Goodbye!");
}
enum GameMessage {
GameOver { won: bool, word: String },
}
fn run_game_logic(
hangman_tx: TurtleCommandSender,
lines_tx: TurtleCommandSender,
smiley_tx: TurtleCommandSender,
tx: mpsc::Sender<GameMessage>,
) {
let secret = choose_word();
println!("Starting hangman game...");
println!("Secret word has {} letters", secret.len());
// Setup: Position hangman turtle and draw base (hill + mast)
{
let mut plan = create_turtle_plan();
setup_hangman(&mut plan);
draw_hill(&mut plan);
hangman_tx.send(plan.build()).ok();
}
// Give render thread time to process
std::thread::sleep(std::time::Duration::from_millis(100));
let mut all_guesses = String::new();
let mut wrong_guesses = 0;
const MAX_WRONG: usize = 8; // 8 body parts after base
// Main game loop
loop {
// Draw current state of lines
draw_lines_state(&lines_tx, &secret, &all_guesses);
// Check if won
if secret.chars().all(|c| all_guesses.contains(c)) {
draw_smiley(&smiley_tx, true);
tx.send(GameMessage::GameOver {
won: true,
word: secret.to_string(),
})
.ok();
break;
}
// Check if lost
if wrong_guesses >= MAX_WRONG {
draw_smiley(&smiley_tx, false);
tx.send(GameMessage::GameOver {
won: false,
word: secret.to_string(),
})
.ok();
break;
}
// Ask for guess
let guess = ask_for_letter();
let guess_lower = guess.to_lowercase();
// Check if already guessed
if all_guesses.contains(&guess_lower) {
println!("You already guessed '{}'", guess_lower);
continue;
}
all_guesses.push_str(&guess_lower);
if secret.contains(&guess_lower) {
println!("✓ Correct! '{}' is in the word", guess_lower);
} else {
println!("✗ Wrong! '{}' is NOT in the word", guess_lower);
wrong_guesses += 1;
// Draw next hangman step
draw_hangman_step(&hangman_tx, wrong_guesses);
println!("Wrong guesses: {}/{}", wrong_guesses, MAX_WRONG);
}
}
}
fn choose_word() -> &'static str {
WORDS[(std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap_or_default()
.as_secs() as usize)
% WORDS.len()]
}
fn ask_for_letter() -> String {
print!("Guess a letter: ");
io::stdout().flush().ok();
let mut guess = String::new();
io::stdin().read_line(&mut guess).ok();
guess.trim().to_string()
}
fn setup_hangman(plan: &mut TurtlePlan) {
plan.hide()
.set_speed(1001) // Instant mode
.set_pen_width(3.0) // Thicker lines for visibility
.set_pen_color(BLACK)
.pen_up()
.go_to(vec2(-100.0, -100.0)) // More centered position
.pen_down();
}
fn draw_hangman_step(tx: &TurtleCommandSender, step: usize) {
let mut plan = create_turtle_plan();
plan.set_speed(1001); // Instant mode
match step {
1 => draw_mast(&mut plan),
2 => draw_bar(&mut plan),
3 => draw_support(&mut plan),
4 => draw_rope(&mut plan),
5 => draw_head(&mut plan),
6 => draw_arms(&mut plan),
7 => draw_body(&mut plan),
8 => draw_legs(&mut plan),
_ => {}
}
tx.send(plan.build()).ok();
}
// Hangman drawing functions (scaled down for visibility)
fn draw_hill(plan: &mut TurtlePlan) {
plan.circle_left(50.0, 180.0, 36)
.left(180.0)
.circle_right(50.0, 90.0, 36)
.right(90.0);
}
fn draw_mast(plan: &mut TurtlePlan) {
plan.forward(150.0);
}
fn draw_bar(plan: &mut TurtlePlan) {
plan.right(90.0).forward(75.0);
}
fn draw_support(plan: &mut TurtlePlan) {
plan.backward(50.0)
.right(135.0)
.forward(35.355)
.backward(35.355)
.left(135.0)
.forward(50.0);
}
fn draw_rope(plan: &mut TurtlePlan) {
plan.set_pen_width(2.0).right(90.0).forward(35.0);
}
fn draw_head(plan: &mut TurtlePlan) {
plan.left(90.0).circle_right(15.0, 540.0, 72);
}
fn draw_arms(plan: &mut TurtlePlan) {
plan.left(60.0)
.forward(50.0)
.backward(50.0)
.left(60.0)
.forward(50.0)
.backward(50.0)
.right(30.0);
}
fn draw_body(plan: &mut TurtlePlan) {
plan.forward(50.0);
}
fn draw_legs(plan: &mut TurtlePlan) {
plan.right(20.0)
.forward(60.0)
.backward(60.0)
.left(40.0)
.forward(60.0)
.backward(60.0)
.right(20.0);
}
fn draw_lines_state(tx: &TurtleCommandSender, secret: &str, all_guesses: &str) {
let mut plan = create_turtle_plan();
plan.hide()
.set_speed(1001) // Instant mode
.set_pen_color(BLACK)
.set_pen_width(2.0)
.pen_up()
.go_to(vec2(-100.0, 100.0)) // Top of screen
.pen_down()
.right(90.0);
// Print word state in console
print!("Word: ");
for letter in secret.chars() {
if all_guesses.contains(letter) {
print!("{} ", letter);
plan.forward(20.0);
} else {
print!("_ ");
plan.forward(20.0);
}
}
println!();
// Draw underscores/circles for each letter
for letter in secret.chars() {
if all_guesses.contains(letter) {
// Draw green circle for revealed letter
plan.pen_up()
.forward(2.5)
.right(90.0)
.set_pen_color(GREEN)
.pen_down()
.circle_left(7.5, 360.0, 24)
.set_pen_color(BLACK)
.left(90.0)
.backward(2.5)
.pen_up();
} else {
// Draw black underscore
plan.forward(5.0);
}
plan.forward(15.0).pen_down();
}
tx.send(plan.build()).ok();
}
fn draw_smiley(tx: &TurtleCommandSender, won: bool) {
let mut plan = create_turtle_plan();
plan.hide()
.set_speed(1001) // Instant mode
.pen_up()
.go_to(vec2(100.0, 0.0)) // Right side of screen
.pen_down()
.set_pen_color(if won { GREEN } else { RED });
// Face
plan.circle_left(50.0, 360.0, 72);
// Left eye
plan.pen_up()
.forward(27.5)
.right(90.0)
.forward(20.0)
.pen_down()
.circle_left(3.0, 360.0, 24);
// Right eye
plan.pen_up()
.forward(42.5)
.pen_down()
.circle_left(3.0, 360.0, 24);
// Mouth
plan.pen_up()
.backward(42.5)
.left(90.0)
.backward(40.0)
.right(90.0)
.pen_down();
if won {
// Smile
plan.right(45.0).circle_left(32.5, 90.0, 36);
} else {
// Frown
plan.left(45.0).circle_right(32.5, 90.0, 36);
}
tx.send(plan.build()).ok();
}

View File

@ -0,0 +1,223 @@
//! Per-turtle command channels for multi-threaded game logic
//!
//! Enables sending turtle commands from game logic threads to the render thread
//! without blocking the render loop.
//!
//! # Usage
//!
//! ```no_run
//! use turtle_lib::*;
//! use std::thread;
//!
//! # #[macroquad::main("Threading")]
//! # async fn main() {
//! let mut app = TurtleApp::new();
//!
//! // Create a turtle and get its command sender
//! let turtle_tx = app.create_turtle_channel(100);
//!
//! // Spawn a game logic thread
//! thread::spawn({
//! let tx = turtle_tx.clone();
//! move || {
//! let mut plan = create_turtle_plan();
//! plan.forward(100.0).right(90.0);
//! tx.send(plan.build()).ok();
//! }
//! });
//!
//! // Main render loop
//! loop {
//! clear_background(WHITE);
//! app.process_commands();
//! app.update();
//! app.render();
//! next_frame().await;
//! }
//! # }
//! ```
use crate::commands::CommandQueue;
use crossbeam::channel::{bounded, Receiver, Sender};
/// Sender for turtle commands from a game logic thread
///
/// This is tied to a specific turtle created via `TurtleApp::create_turtle_channel()`.
/// The turtle is guaranteed to exist on the render thread.
///
/// # Thread Safety
/// Can be cloned and shared across threads. Multiple game threads can send
/// commands to the same turtle safely.
///
/// # Examples
/// ```no_run
/// # use turtle_lib::*;
/// # fn example() -> Result<(), String> {
/// # let mut app = TurtleApp::new();
/// let tx = app.create_turtle_channel(100);
///
/// // Send commands from game thread
/// let mut plan = create_turtle_plan();
/// plan.forward(50.0);
/// tx.send(plan.build())?;
///
/// // Or non-blocking variant
/// tx.try_send(plan.build()).ok();
/// # Ok(())
/// # }
/// ```
#[derive(Clone)]
pub struct TurtleCommandSender {
turtle_id: usize,
tx: Sender<CommandQueue>,
}
/// Receiver for turtle commands on the render thread
///
/// Paired with `TurtleCommandSender` via `turtle_command_channel()`.
/// Automatically managed by `TurtleApp::process_commands()`.
pub struct TurtleCommandReceiver {
turtle_id: usize,
rx: Receiver<CommandQueue>,
}
impl TurtleCommandSender {
/// Get the turtle ID this sender is bound to
#[must_use]
pub fn turtle_id(&self) -> usize {
self.turtle_id
}
/// Send commands (blocking)
///
/// Blocks if the channel buffer is full. This is appropriate for game logic
/// threads where blocking is acceptable. The buffer size is specified when
/// creating the channel.
///
/// # Errors
/// Returns error if the receiver has been dropped (render thread exited).
///
/// # Examples
/// ```no_run
/// # use turtle_lib::*;
/// # fn example() -> Result<(), String> {
/// # let mut app = TurtleApp::new();
/// # let tx = app.create_turtle_channel(100);
/// let mut plan = create_turtle_plan();
/// plan.forward(100.0);
/// tx.send(plan.build())?;
/// # Ok(())
/// # }
/// ```
pub fn send(&self, queue: CommandQueue) -> Result<(), String> {
self.tx
.send(queue)
.map_err(|e| format!("Channel disconnected: {}", e))
}
/// Send commands (non-blocking)
///
/// Returns immediately. If the channel buffer is full, returns an error
/// without blocking.
///
/// # Errors
/// Returns error if the buffer is full or the receiver has been dropped.
///
/// # Examples
/// ```no_run
/// # use turtle_lib::*;
/// # fn example() {
/// # let mut app = TurtleApp::new();
/// # let tx = app.create_turtle_channel(100);
/// let mut plan = create_turtle_plan();
/// plan.forward(100.0);
/// tx.try_send(plan.build()).ok(); // Ignore if buffer full
/// # }
/// ```
pub fn try_send(&self, queue: CommandQueue) -> Result<(), String> {
self.tx
.try_send(queue)
.map_err(|e| format!("Failed to send: {}", e))
}
}
impl TurtleCommandReceiver {
/// Get the turtle ID this receiver is bound to
#[must_use]
pub fn turtle_id(&self) -> usize {
self.turtle_id
}
/// Drain all pending commands for this turtle (non-blocking)
///
/// # Examples
/// ```no_run
/// # use turtle_lib::*;
/// # async fn example() {
/// # let mut app = TurtleApp::new();
/// # let _tx = app.create_turtle_channel(100);
/// // This is called automatically by app.process_commands()
/// // But you can also do it manually:
/// loop {
/// app.update();
/// app.render();
/// # break;
/// }
/// # }
/// ```
pub fn recv_all(&self) -> Vec<CommandQueue> {
self.rx.try_iter().collect()
}
/// Try to receive one command batch (non-blocking)
#[must_use]
pub fn try_recv(&self) -> Option<CommandQueue> {
self.rx.try_recv().ok()
}
/// Check if this receiver's queue is empty
#[must_use]
pub fn is_empty(&self) -> bool {
self.rx.is_empty()
}
/// Get the number of pending command batches
#[must_use]
pub fn len(&self) -> usize {
self.rx.len()
}
}
/// Create a command channel for a specific turtle
///
/// The tuple represents (sender, receiver) where:
/// - Sender goes to game logic threads (cloneable, can be distributed)
/// - Receiver stays in the render thread (part of TurtleApp internally)
///
/// # Arguments
/// * `turtle_id` - The ID of the turtle this channel is for (must be valid)
/// * `buffer_size` - Maximum number of pending command batches before sender blocks
///
/// # Panics
/// Panics if buffer_size is 0.
///
/// # Examples
/// ```no_run
/// # use turtle_lib::*;
/// # fn example() {
/// let (tx, _rx) = turtle_command_channel(0, 100);
/// // Sender goes to game threads
/// // Receiver stays in render thread (or TurtleApp)
/// # }
/// ```
pub fn turtle_command_channel(
turtle_id: usize,
buffer_size: usize,
) -> (TurtleCommandSender, TurtleCommandReceiver) {
assert!(buffer_size > 0, "buffer_size must be > 0");
let (tx, rx) = bounded(buffer_size);
(
TurtleCommandSender { turtle_id, tx },
TurtleCommandReceiver { turtle_id, rx },
)
}

View File

@ -49,6 +49,7 @@
pub mod builders; pub mod builders;
pub mod circle_geometry; pub mod circle_geometry;
pub mod commands; pub mod commands;
pub mod commands_channel;
pub mod drawing; pub mod drawing;
pub mod execution; pub mod execution;
pub mod general; pub mod general;
@ -60,6 +61,7 @@ pub mod tweening;
// Re-export commonly used types // Re-export commonly used types
pub use builders::{CurvedMovement, DirectionalMovement, Turnable, TurtlePlan, WithCommands}; pub use builders::{CurvedMovement, DirectionalMovement, Turnable, TurtlePlan, WithCommands};
pub use commands::{CommandQueue, TurtleCommand}; pub use commands::{CommandQueue, TurtleCommand};
pub use commands_channel::{turtle_command_channel, TurtleCommandReceiver, TurtleCommandSender};
pub use general::{Angle, AnimationSpeed, Color, Coordinate, Length, Precision}; pub use general::{Angle, AnimationSpeed, Color, Coordinate, Length, Precision};
pub use shapes::{ShapeType, TurtleShape}; pub use shapes::{ShapeType, TurtleShape};
pub use state::{DrawCommand, Turtle, TurtleWorld}; pub use state::{DrawCommand, Turtle, TurtleWorld};
@ -74,10 +76,13 @@ pub use macroquad::prelude::{
}; };
use macroquad::prelude::*; use macroquad::prelude::*;
use std::collections::HashMap;
/// Main turtle application struct /// Main turtle application struct
pub struct TurtleApp { pub struct TurtleApp {
world: TurtleWorld, world: TurtleWorld,
// Receivers for turtle command channels
receivers: HashMap<usize, TurtleCommandReceiver>,
// Mouse panning state // Mouse panning state
is_dragging: bool, is_dragging: bool,
last_mouse_pos: Option<Vec2>, last_mouse_pos: Option<Vec2>,
@ -91,6 +96,7 @@ impl TurtleApp {
pub fn new() -> Self { pub fn new() -> Self {
Self { Self {
world: TurtleWorld::new(), world: TurtleWorld::new(),
receivers: HashMap::new(),
is_dragging: false, is_dragging: false,
last_mouse_pos: None, last_mouse_pos: None,
zoom_level: 1.0, zoom_level: 1.0,
@ -102,6 +108,78 @@ impl TurtleApp {
self.world.add_turtle() self.world.add_turtle()
} }
/// Create a turtle and a command channel for it
///
/// This is the preferred way to set up turtles when using threading.
/// Call this ONCE per turtle during setup, before spawning game logic threads.
///
/// # Arguments
/// * `buffer_size` - Maximum pending command batches before sender blocks (typically 50-200)
///
/// # Returns
/// A `TurtleCommandSender` that can be cloned and sent to game logic threads.
/// The turtle is automatically managed by TurtleApp.
///
/// # Examples
/// ```no_run
/// # use turtle_lib::*;
/// # #[macroquad::main("Threading")]
/// # async fn main() {
/// let mut app = TurtleApp::new();
///
/// // Create turtle and get sender
/// let turtle_tx = app.create_turtle_channel(100);
///
/// // Send to game threads
/// let tx_clone = turtle_tx.clone();
/// std::thread::spawn(move || {
/// let mut plan = create_turtle_plan();
/// plan.forward(100.0);
/// tx_clone.send(plan.build()).ok();
/// });
/// # }
/// ```
pub fn create_turtle_channel(&mut self, buffer_size: usize) -> TurtleCommandSender {
let turtle_id = self.world.add_turtle();
let (tx, rx) = commands_channel::turtle_command_channel(turtle_id, buffer_size);
self.receivers.insert(turtle_id, rx);
tx
}
/// Process all pending commands from all turtle channels
///
/// Call this once per frame in your render loop, before `update()`.
/// Drains all receivers and applies commands to their respective turtles.
///
/// # Examples
/// ```no_run
/// # use turtle_lib::*;
/// # #[macroquad::main("Threading")]
/// # async fn main() {
/// # let mut app = TurtleApp::new();
/// # let _tx = app.create_turtle_channel(100);
/// loop {
/// clear_background(WHITE);
/// app.process_commands(); // ← Process channel commands
/// app.update();
/// app.render();
/// next_frame().await;
/// }
/// # }
/// ```
pub fn process_commands(&mut self) {
// Collect all turtle IDs to avoid borrow issues
let turtle_ids: Vec<usize> = self.receivers.keys().copied().collect();
for turtle_id in turtle_ids {
if let Some(receiver) = self.receivers.get(&turtle_id) {
for queue in receiver.recv_all() {
self.append_commands(turtle_id, queue);
}
}
}
}
/// Add commands from a turtle plan to the application for the default turtle (ID 0) /// Add commands from a turtle plan to the application for the default turtle (ID 0)
/// ///
/// Speed is controlled by `SetSpeed` commands in the queue. /// Speed is controlled by `SetSpeed` commands in the queue.
@ -157,6 +235,21 @@ impl TurtleApp {
} }
} }
/// Append commands from a CommandQueue to a turtle's animation queue
///
/// Used internally by `process_commands()` and can be used directly
/// when you have a `CommandQueue` instead of a `TurtlePlan`.
pub fn append_commands(&mut self, turtle_id: usize, queue: CommandQueue) {
// Ensure turtle exists
while self.world.turtles.len() <= turtle_id {
self.world.add_turtle();
}
if let Some(turtle) = self.world.get_turtle_mut(turtle_id) {
turtle.tween_controller.append_commands(queue);
}
}
/// Update animation state (call every frame) /// Update animation state (call every frame)
pub fn update(&mut self) { pub fn update(&mut self) {
// Handle mouse panning and zoom // Handle mouse panning and zoom

View File

@ -287,12 +287,8 @@ pub struct TurtleWorld {
impl TurtleWorld { impl TurtleWorld {
#[must_use] #[must_use]
pub fn new() -> Self { pub fn new() -> Self {
let mut default_turtle = Turtle::default();
default_turtle.turtle_id = 0;
default_turtle.tween_controller =
TweenController::new(CommandQueue::new(), AnimationSpeed::default());
Self { Self {
turtles: vec![default_turtle], // Start with one default turtle turtles: vec![], // Start with no turtles
camera: Camera2D { camera: Camera2D {
zoom: vec2(1.0 / screen_width() * 2.0, 1.0 / screen_height() * 2.0), zoom: vec2(1.0 / screen_width() * 2.0, 1.0 / screen_height() * 2.0),
target: vec2(0.0, 0.0), target: vec2(0.0, 0.0),