This commit is contained in:
Franz Dietrich 2025-10-12 17:30:38 +02:00
parent 6d7d3fc434
commit f43a71739e

View File

@ -12,6 +12,25 @@ pub trait WithCommands {
/// Trait for forward/backward movement
pub trait DirectionalMovement: WithCommands {
/// Moves the turtle forward by the specified distance.
///
/// The turtle moves in the direction of its current heading.
/// If the pen is down, a line is drawn.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Forward Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Move forward 100 pixels
/// turtle.forward(100.0);
///
/// // Chain movements
/// turtle.forward(50.0).right(90.0).forward(50.0);
/// }
/// ```
fn forward<T>(&mut self, distance: T) -> &mut Self
where
T: Into<Precision>,
@ -21,6 +40,25 @@ pub trait DirectionalMovement: WithCommands {
self
}
/// Moves the turtle backward by the specified distance.
///
/// The turtle moves opposite to its current heading without changing
/// the heading direction. If the pen is down, a line is drawn.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Backward Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Move backward 100 pixels
/// turtle.backward(100.0);
///
/// // Draw a line forward, then retrace backward
/// turtle.forward(100.0).backward(50.0);
/// }
/// ```
fn backward<T>(&mut self, distance: T) -> &mut Self
where
T: Into<Precision>,
@ -33,6 +71,24 @@ pub trait DirectionalMovement: WithCommands {
/// Trait for turning operations
pub trait Turnable: WithCommands {
/// Turns the turtle left (counter-clockwise) by the specified angle in degrees.
///
/// Changes the turtle's heading without moving its position.
/// Does not draw anything.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Left Turn Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Draw a square using left turns
/// for _ in 0..4 {
/// turtle.forward(100.0).left(90.0);
/// }
/// }
/// ```
fn left<T>(&mut self, angle: T) -> &mut Self
where
T: Into<Precision>,
@ -42,6 +98,24 @@ pub trait Turnable: WithCommands {
self
}
/// Turns the turtle right (clockwise) by the specified angle in degrees.
///
/// Changes the turtle's heading without moving its position.
/// Does not draw anything.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Right Turn Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Draw a triangle using right turns
/// for _ in 0..3 {
/// turtle.forward(100.0).right(120.0);
/// }
/// }
/// ```
fn right<T>(&mut self, angle: T) -> &mut Self
where
T: Into<Precision>,
@ -54,6 +128,35 @@ pub trait Turnable: WithCommands {
/// Trait for curved movement (circles)
pub trait CurvedMovement: WithCommands {
/// Draws a circular arc turning to the left (counter-clockwise).
///
/// The turtle draws a circular arc with the specified radius, sweeping through
/// the given angle. The circle center is positioned to the left of the turtle.
///
/// # Parameters
///
/// - `radius`: Distance from turtle to circle center (in pixels)
/// - `angle`: Arc sweep angle in degrees (360° = full circle)
/// - `steps`: Number of line segments to approximate the arc (more = smoother)
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Circle Left Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Draw a full circle
/// turtle.circle_left(50.0, 360.0, 36);
///
/// // Filled circle
/// turtle.pen_up().go_to(vec2(100.0, 0.0)).pen_down();
/// turtle.set_fill_color(RED)
/// .begin_fill()
/// .circle_left(50.0, 360.0, 72)
/// .end_fill();
/// }
/// ```
fn circle_left<R, A>(&mut self, radius: R, angle: A, steps: usize) -> &mut Self
where
R: Into<Precision>,
@ -70,6 +173,37 @@ pub trait CurvedMovement: WithCommands {
self
}
/// Draws a circular arc turning to the right (clockwise).
///
/// The turtle draws a circular arc with the specified radius, sweeping through
/// the given angle. The circle center is positioned to the right of the turtle.
///
/// # Parameters
///
/// - `radius`: Distance from turtle to circle center (in pixels)
/// - `angle`: Arc sweep angle in degrees (360° = full circle)
/// - `steps`: Number of line segments to approximate the arc (more = smoother)
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Circle Right Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Draw an S-curve using both directions
/// turtle.circle_left(50.0, 180.0, 36)
/// .circle_right(50.0, 180.0, 36);
///
/// // Yin-yang pattern uses circle_left and circle_right
/// turtle.set_fill_color(BLACK)
/// .begin_fill()
/// .circle_right(100.0, 180.0, 36)
/// .circle_right(50.0, 180.0, 36)
/// .circle_left(50.0, 180.0, 36)
/// .end_fill();
/// }
/// ```
fn circle_right<R, A>(&mut self, radius: R, angle: A, steps: usize) -> &mut Self
where
R: Into<Precision>,
@ -94,6 +228,35 @@ pub struct TurtlePlan {
}
impl TurtlePlan {
/// Creates a new empty turtle command plan.
///
/// This has to be used when not using the `turtle_main` macro.
///
/// # Examples
///
/// ```no_run
/// use turtle_lib_macroquad::*;
/// use macroquad::prelude::*;
///
/// #[macroquad::main("Manual Setup")]
/// async fn main() {
/// let mut turtle = TurtlePlan::new();
/// turtle.forward(100.0).right(90.0).forward(100.0);
///
/// let mut app = TurtleApp::new().with_commands(turtle.build());
///
/// loop {
/// clear_background(WHITE);
/// app.update();
/// app.render();
///
/// if is_key_pressed(KeyCode::Escape) || is_key_pressed(KeyCode::Q) {
/// break;
/// }
/// next_frame().await;
/// }
/// }
/// ```
#[must_use]
pub fn new() -> Self {
Self {
@ -101,86 +264,394 @@ impl TurtlePlan {
}
}
#[must_use]
pub fn with_capacity(capacity: usize) -> Self {
Self {
queue: CommandQueue::with_capacity(capacity),
}
}
/// Set animation speed
/// - Values >= 999 = instant mode (no animation)
/// - Values < 999 = animated mode with specified pixels/second
/// Sets the animation speed for turtle movements.
///
/// Speed controls how fast the turtle moves during animations:
/// - Values `>= 1000`: Instant mode - commands execute immediately without animation.
/// The bigger the number, the more segments are drawn per frame.
/// - Values `< 1000`: Animated mode - turtle moves at specified pixels per second
///
/// You can dynamically switch between instant and animated modes during execution.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Speed Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Slow animation at 50 pixels/second
/// turtle.set_speed(50.0)
/// .forward(100.0);
///
/// // Switch to instant mode
/// turtle.set_speed(1000.0)
/// .forward(100.0); // Executes immediately
/// }
/// ```
pub fn set_speed(&mut self, speed: impl Into<AnimationSpeed>) -> &mut Self {
self.queue.push(TurtleCommand::SetSpeed(speed.into()));
self
}
/// Sets the pen color for drawing lines.
///
/// The pen color affects all subsequent drawing operations (forward, backward, circles)
/// until changed again. Does not affect fill color.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Pen Color Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Draw with predefined colors
/// turtle.set_pen_color(RED)
/// .forward(100.0)
/// .set_pen_color(BLUE)
/// .right(90.0)
/// .forward(100.0);
/// }
/// ```
pub fn set_pen_color(&mut self, color: Color) -> &mut Self {
self.queue.push(TurtleCommand::SetColor(color));
self
}
/// Sets the pen width (thickness) for drawing lines.
///
/// The width is measured in pixels. Default is typically 2.0.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Pen Width Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Thin line
/// turtle.set_pen_width(1.0)
/// .forward(100.0);
///
/// // Thick line
/// turtle.set_pen_width(10.0)
/// .forward(100.0);
/// }
/// ```
pub fn set_pen_width(&mut self, width: Precision) -> &mut Self {
self.queue.push(TurtleCommand::SetPenWidth(width));
self
}
/// Sets the turtle's absolute heading direction in degrees.
///
/// - `0°` points to the right (east)
/// - `90°` points up (north)
/// - `180°` points left (west)
/// - `270°` points down (south)
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Heading Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Point upward
/// turtle.set_heading(90.0)
/// .forward(100.0);
///
/// // Point left
/// turtle.set_heading(180.0)
/// .forward(100.0);
/// }
/// ```
pub fn set_heading(&mut self, heading: Precision) -> &mut Self {
self.queue.push(TurtleCommand::SetHeading(heading));
self
}
/// Lifts the pen up so the turtle can move without drawing.
///
/// When filling shapes, `pen_up()` also closes the current contour,
/// allowing you to create multi-contour fills (e.g., shapes with holes).
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Pen Up/Down Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Move without drawing
/// turtle.pen_up()
/// .forward(100.0) // No line drawn
/// .pen_down()
/// .forward(100.0); // Line drawn
///
/// // Create a donut shape (outer circle with inner hole)
/// turtle.set_fill_color(BLUE)
/// .begin_fill()
/// .circle_left(100.0, 360.0, 72) // Outer circle
/// .pen_up() // Close first contour
/// .go_to(vec2(0.0, -30.0))
/// .pen_down() // Start second contour
/// .circle_left(30.0, 360.0, 36) // Inner circle (becomes hole)
/// .end_fill();
/// }
/// ```
pub fn pen_up(&mut self) -> &mut Self {
self.queue.push(TurtleCommand::PenUp);
self
}
/// Lowers the pen so the turtle draws when moving.
///
/// This is the default state. When filling shapes, `pen_down()` starts
/// a new contour after `pen_up()` was called.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Pen Down Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// turtle.pen_up()
/// .forward(50.0) // Move without drawing
/// .pen_down() // Start drawing
/// .forward(100.0); // Line appears
/// }
/// ```
pub fn pen_down(&mut self) -> &mut Self {
self.queue.push(TurtleCommand::PenDown);
self
}
/// Hides the turtle cursor from view.
///
/// The turtle will still execute commands and draw, but the cursor
/// (typically an arrow or triangle) won't be visible.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Hide Turtle Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// turtle.hide() // Turtle cursor invisible
/// .forward(100.0)
/// .right(90.0)
/// .forward(100.0);
/// }
/// ```
pub fn hide(&mut self) -> &mut Self {
self.queue.push(TurtleCommand::HideTurtle);
self
}
/// Shows the turtle cursor.
///
/// Makes the turtle cursor visible if it was previously hidden.
/// This is the default state.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Show Turtle Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// turtle.hide()
/// .forward(100.0)
/// .show() // Turtle becomes visible again
/// .forward(100.0);
/// }
/// ```
pub fn show(&mut self) -> &mut Self {
self.queue.push(TurtleCommand::ShowTurtle);
self
}
/// Sets the turtle's shape using a `TurtleShape` object.
///
/// For most use cases, prefer using `shape()` which accepts a `ShapeType` enum.
///
/// # Examples
///
/// ```
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Shape Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// let custom_shape = ShapeType::Arrow.to_shape();
/// turtle.set_shape(custom_shape);
/// }
/// ```
pub fn set_shape(&mut self, shape: TurtleShape) -> &mut Self {
self.queue.push(TurtleCommand::SetShape(shape));
self
}
/// Sets the turtle's visual appearance.
///
/// Available shapes: `Arrow`, `Triangle`, `Square`, `Circle`.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Shape Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Use different shapes
/// turtle.shape(ShapeType::Arrow)
/// .forward(50.0)
/// .shape(ShapeType::Circle)
/// .forward(50.0);
/// }
/// ```
pub fn shape(&mut self, shape_type: ShapeType) -> &mut Self {
self.set_shape(shape_type.to_shape())
}
/// Starts recording a shape to be filled.
///
/// All turtle movements between `begin_fill()` and `end_fill()` define
/// the shape's outline. The shape is filled using the fill color when
/// `end_fill()` is called.
///
/// Multiple contours can be created using `pen_up()` and `pen_down()`.
/// The `EvenOdd` fill rule automatically creates holes for inner contours.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Fill Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Fill a square
/// turtle.set_fill_color(BLUE)
/// .begin_fill();
/// for _ in 0..4 {
/// turtle.forward(100.0).right(90.0);
/// }
/// turtle.end_fill();
///
/// // Fill a circle
/// turtle.pen_up().go_to(vec2(150.0, 0.0)).pen_down();
/// turtle.set_fill_color(RED)
/// .begin_fill()
/// .circle_left(50.0, 360.0, 36)
/// .end_fill();
/// }
/// ```
pub fn begin_fill(&mut self) -> &mut Self {
self.queue.push(TurtleCommand::BeginFill);
self
}
/// Completes the fill operation started with `begin_fill()`.
///
/// Closes the current shape and fills it with the fill color.
/// All contours recorded since `begin_fill()` are filled together.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("End Fill Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Triangle with fill
/// turtle.set_fill_color(GREEN)
/// .begin_fill();
/// for _ in 0..3 {
/// turtle.forward(100.0).right(120.0);
/// }
/// turtle.end_fill();
/// }
/// ```
pub fn end_fill(&mut self) -> &mut Self {
self.queue.push(TurtleCommand::EndFill);
self
}
/// Sets the color used to fill shapes.
///
/// This affects all shapes filled with `begin_fill()`/`end_fill()`.
/// Independent from the pen color used for outlines.
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Fill Color Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Yellow fill with blue outline
/// turtle.set_fill_color(YELLOW)
/// .set_pen_color(BLUE)
/// .begin_fill()
/// .circle_left(50.0, 360.0, 36)
/// .end_fill();
/// }
/// ```
pub fn set_fill_color(&mut self, color: impl Into<Color>) -> &mut Self {
self.queue
.push(TurtleCommand::SetFillColor(Some(color.into())));
self
}
/// Moves the turtle to an absolute position.
///
/// The turtle moves in a straight line to the specified coordinates.
/// If the pen is down, a line is drawn. The turtle's heading is not changed.
///
/// Coordinates are in screen space:
/// - `(0, 0)` is at the center
/// - Positive x goes right
/// - Positive y goes down
///
/// # Examples
///
/// ```no_run
/// # use turtle_lib_macroquad::*;
/// #
/// #[turtle_main("Goto Example")]
/// fn draw(turtle: &mut TurtlePlan) {
/// // Draw a triangle by connecting points
/// turtle.go_to(vec2(0.0, 0.0));
/// turtle.go_to(vec2(100.0, 0.0));
/// turtle.go_to(vec2(50.0, 86.6));
/// turtle.go_to(vec2(0.0, 0.0));
/// }
/// ```
pub fn go_to(&mut self, coord: impl Into<Coordinate>) -> &mut Self {
self.queue.push(TurtleCommand::Goto(coord.into()));
self
}
/// Consumes the `TurtlePlan` and returns the command queue.
///
/// Use this to finalize the turtle commands and pass them to `TurtleApp`.
/// This method consumes `self`, so the plan cannot be used afterward.
///
/// # Examples
///
/// ```
/// # use turtle_lib_macroquad::*;
/// #
/// let mut turtle = TurtlePlan::new();
/// turtle.forward(100.0).right(90.0).forward(100.0);
///
/// // Build and get the command queue
/// let commands = turtle.build();
/// # assert!(!commands.is_empty());
/// ```
#[must_use]
pub fn build(self) -> CommandQueue {
self.queue